Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Student completes the square twice. Condone sign errors. $\begin{aligned} & (x-4)^{2}-16+(y+5)^{2}-25+1=0 \\ & (x-4)^{2}+(y+5)^{2}=40 \end{aligned}$	M1	1.1b	4th Find the centre and radius of a circle, given the equation, by completing the square.
	So centre is (4, -5)	A1	1.1b	
	and radius is $\sqrt{40}$	A1	1.1b	
		(3)		
5b	Substitutes $x=10$ into equation (in either form). $10^{2}-8 \times 10+y^{2}+10 y+1=0 \text { or }(10-4)^{2}+(y+5)^{2}=40$	M1	2.2a	5th Solve coordinate geometry problems involving circles in context.
	Rearranges to 3 term quadratic in $y y^{2}+10 y+21=0$ (could be in completed square form $(y+5)^{2}=4$)	M1	1.1b	
	Obtains solutions $y=-3, y=-7$ (must give both).	A1	1.1b	
	Rejects $y=-7$ giving suitable reason (e.g. $-7<-5$) or 'it would be below the centre' or ' $A Q$ must slope upwards' o.e.	B1	2.3	
		(4)		
5c	$m_{A Q}=\frac{-3-(-5)}{10-4}=\frac{1}{3}$	B1	1.1b	5th Find the equation of the tangent to a given circle at a specified point.
	$m_{l_{2}}=-3$ (i.e. -1 over their $m_{A Q}$)	B1ft	2.2a	
	Substitutes their Q into a correct equation of a line. For example, $-3=(-3)(10)+b \text { or } y+3=-3(x-10)$	M1	1.1b	
	$y=-3 x+27$	A1	1.1b	
		(4)		

5d	${ }^{\operatorname{unu}} A Q=\binom{6}{2}$ o.e. (could just be in coordinate form).	M1	3.1a	5th Solve coordinate geometry problems involving circles in context.
	${\underset{A}{\text { umi }}}^{\mathrm{um}}=\binom{-2}{6}$ o.e. so student concludes that point P has coordinates $(2,1)$.	M1	3.1a	
	Substitutes their P and their gradient $\frac{1}{3}$ ($m_{A Q}$ from 5c) into a correct equation of a line. For example, $1=\left(\frac{1}{3}\right)(2)+b \text { or } y-1=\left(\frac{1}{3}\right)(x-2)$	M1	2.2a	
	$y=\frac{1}{3} x+\frac{1}{3}$	A1	1.1b	
		(4)		
5e	$P A=\sqrt{40}$	B1	3.1a	5th Solve coordinate geometry problems involving circles in context.
	Uses Pythagoras' theorem to find $E P=\sqrt{\frac{40}{9}}$.	B1	2.2a	
	Area of $E P A=\frac{1}{2} \times \sqrt{40} \times \sqrt{\frac{40}{9}}$ (could be in two parts).	M1	1.1b	
	$\text { Area }=\frac{20}{3}$	A1	1.1b	
		(4)		
				(19 marks)
Notes				

