Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Student completes the square twice. Condone sign errors. $(x-4)^{2}-16+(y+5)^{2}-25+1=0$ $(x-4)^{2}+(y+5)^{2}=40$	M1	1.1b	4th Find the centre and radius of a circle, given the equation, by
	So centre is $(4, -5)$ and radius is $\sqrt{40}$	A1 A1	1.1b 1.1b	completing the square.
		(3)		
5b	Substitutes $x = 10$ into equation (in either form). $10^2 - 8 \times 10 + y^2 + 10y + 1 = 0$ or $(10 - 4)^2 + (y + 5)^2 = 40$	M1	2.2a	5th Solve coordinate geometry problems involving circles in context.
	Rearranges to 3 term quadratic in $y y^2 + 10y + 21 = 0$ (could be in completed square form $(y+5)^2 = 4$)	M1	1.1b	
	Obtains solutions $y = -3$, $y = -7$ (must give both).	A1	1.1b	
	Rejects $y = -7$ giving suitable reason (e.g. $-7 < -5$) or 'it would be below the centre' or 'AQ must slope upwards' o.e.	B1	2.3	
		(4)		
5c	$m_{AQ} = \frac{-3 - (-5)}{10 - 4} = \frac{1}{3}$	B1	1.1b	5th Find the equation of the tangent to a given circle at a specified point.
	$m_{l_2} = -3$ (i.e1 over their m_{AQ})	B1ft	2.2a	
	Substitutes their Q into a correct equation of a line. For example,	M1	1.1b	specific permi
	-3 = (-3)(10) + b or $y + 3 = -3(x - 10)$			
	y = -3x + 27	A1	1.1b	
		(4)		

Pearson Edexcel AS and A level Mathematics

5d	$AQ = \begin{pmatrix} 6\\ 2 \end{pmatrix}$ o.e. (could just be in coordinate form).	M1	3.1a	5th Solve coordinate geometry problems involving circles in context.			
	$AP = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$ o.e. so student concludes that point <i>P</i> has coordinates (2, 1).	M1	3.1a				
	Substitutes their <i>P</i> and their gradient $\frac{1}{3}$ (m_{AQ} from 5c) into a correct equation of a line. For example, $1 = \left(\frac{1}{3}\right)(2) + b$ or $y - 1 = \left(\frac{1}{3}\right)(x - 2)$	M1	2.2a				
	$y = \frac{1}{3}x + \frac{1}{3}$	A1	1.1b				
		(4)					
5e	$PA = \sqrt{40}$	B 1	3.1a	5th			
	Uses Pythagoras' theorem to find $EP = \sqrt{\frac{40}{9}}$.	B1	2.2a	Solve coordinate geometry problems involving circles			
	Area of $EPA = \frac{1}{2} \times \sqrt{40} \times \sqrt{\frac{40}{9}}$ (could be in two parts).	M1	1.1b	in context.			
	Area = $\frac{20}{3}$	A1	1.1b				
		(4)					
(19 marks)							
Notes							

Pearson Edexcel AS and A level Mathematics